skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fayyazi, Arash"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A novel high-fan-in differential superconductor neuron structure designed for ultra-high-performance spiking neural network (SNN) accelerators is presented. Utilizing a high-fan-in neuron structure allows us to design SNN accelerators with more synaptic connections, enhancing the overall network capabilities. The proposed neuron design is based on superconductor electronics fabric, incorporating multiple superconducting loops, each with two Josephson Junctions. This arrangement enables each input data branch to have positive and negative inductive coupling, supporting excitatory and inhibitory synaptic data. Compatibility with synaptic devices and thresholding operation is achieved using a single flux quantum pulse-based logic style. The neuron design, along with ternary synaptic connections, forms the foundation for a superconductor-based SNN inference. To demonstrate the capabilities of our design, we train the SNN using snnTorch, augmenting the PyTorch framework. After pruning, the demonstrated SNN inference achieves an impressive 96.1% accuracy on MNIST images. Notably, the network exhibits a remarkable throughput of 8.92 GHz while consuming only 1.5 nJ per inference, including the energy consumption associated with cooling to 4 K. These results underscore the potential of superconductor electronics in developing high-performance and ultra-energy-efficient neural network accelerator architectures. 
    more » « less
  2. null (Ed.)
  3. Artificial Neural Networks (ANNs) play a key role in many machine learning (ML) applications but poses arduous challenges in terms of storage and computation of network parameters. Memristive crossbar arrays (MCAs) are capable of both computation and storage, making them promising for in-memory computing enabled neural network accelerators. At the same time, the presence of a significant amount of zero weights in ANNs has motivated research in a variety of parameter reduction techniques. However, for crossbar based architectures, the study of efficient methods to take advantage of network sparsity is still in the early stage. This paper presents CSrram, an efficient ex-situ training framework for hybrid CMOS-memristive neuromorphic circuits. CSrram includes a pre-defined block diagonal clustered (BDC) sparsity algorithm to significantly reduce area and power consumption. The proposed framework is verified on a wide range of datasets including MNIST handwritten recognition, fashion MNIST, breast cancer prediction (BCW), IRIS, and mobile health monitoring. Compared to state of the art fully connected memristive neuromorphic circuits, our CSrram with only 25% density of weights in the first junction, provides a power and area efficiency of 1.5x and 2.6x (averaged over five datasets), respectively, without any significant test accuracy loss. 
    more » « less